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Particle dynamics and pattern formation in a
rotating suspension

JONGHOON LEE† AND ANTHONY J. C. LADD
Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611-6005

(Received 16 November 2005 and in revised form 20 October)

A rotating suspension of non-neutrally buoyant particles, confined by a horizontal cyl-
inder, can be unstable to axial perturbations in concentration. A highly regular pattern
of particle density and fluid flow then coexists in a non-equilibrium stationary state.
The density profile along the cylinder axis is roughly sinusoidal, with a well-defined
wavelength close to the cylinder diameter, and has a magnitude of approximately 30 %
of the average number density. We have used numerical simulations within the Stokes-
flow approximation to investigate the mechanism underlying axial-band formation.
Our results show that bands develop from an inhomogeneous particle distribution in
the radial plane, which is itself driven by the competition between gravity and the
viscous drag of the rotating fluid. We have discovered that the mean angular velocity
of the particles is an order parameter which distinguishes between a low-frequency
segregated phase and a high-frequency dispersed phase, where the particles fill the
whole volume uniformly. The order parameter is a function of a single dimensionless
frequency, with a characteristic length that is the mean interparticle separation. As the
rotational frequency increases, the particle distribution becomes more homogeneous
and the band structure disappears. Hydrodynamic diffusion stabilizes the suspension
against centrifugal forces, allowing for a uniformly dispersed phase that can be used
to grow three-dimensional cell cultures in an artificial microgravity environment.

1. Introduction
In the past decade, there has been a rapid growth of interest in non-equilibrium pat-

terns that occur in granular and granular-fluid systems. A dry granular material segre-
gates by size and mass when flowing down an inclined plane (Pouliquen, Delour &
Savage 1997) or rotating about a horizontal axis (Ottino & Khakhar 2000). In both
cases the segregation occurs in a thin mobile surface layer on top of the packed
particle bed (Zik et al. 1994). Spatially periodic variations in particle concentration
have also been observed in nearly monodisperse granular flows (Shen 2002). The
dominant interactions in these systems are inelastic frictional collisions between the
particles, but size segregation is also observed in wet granular slurries (Jain et al. 2001),
although here the contacts between particles are lubricated by the interstitial fluid.

More recently, band formation has been observed in monodisperse suspensions,
where the interactions are long range and fluid mediated (Tirumkudulu, Mileo &
Acrivos 2000; Lipson & Seiden 2002; Breu, Kruelle & Rehberg 2003; Matson,
Ackerson & Tong 2003). Axial segregation is known to occur under two rather
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different sets of circumstances. In a partially filled cylinder, a suspension of neutrally
buoyant particles is unstable, forming bands of particles interspersed with pure fluid
(Tirumkudulu et al. 2000). In a filled cylinder, a suspension of neutrally buoyant
particles is stable, but bands are formed if the particles are of significantly different
density from the suspending fluid. Our simulations are directed towards experiments
where the suspension fills the cylinder and the particles are not neutrally buoyant
(Lipson & Seiden 2002; Breu et al. 2003; Matson et al. 2003, 2005).

Recently, a series of different non-equilibrium patterns of particle density has been
reported (Matson et al. 2003, 2005) in dilute suspensions of non-Brownian particles,
under conditions that, in most instances, closely approximated Stokes flow. Axial
bands formed over a narrow range of rotation frequencies and then disappeared as
the angular velocity of the cylinder increased further. In viscous fluids (η > 60 cp), a
uniformly dispersed particle phase was then observed over a small range of frequencies.
At still higher frequencies, more pronounced and asymmetric concentration bands
were observed, with separate bands of dense suspension and pure fluid. In contrast,
the low-frequency banding was a smooth sinusoidal concentration variation, with an
amplitude approximately 30 % of the mean particle concentration and a wavelength
roughly equal to the cylinder diameter, 2R. In other experiments (Lipson & Seiden
2002; Breu et al. 2003), the particles aggregated into well-separated bands, similar to
the high-frequency bands in Matson et al. (2003).

Matson et al. (2003) used glycerin–water mixtures with kinematic viscosities ν

ranging from 5 to 70 mm2 s−1. The particle Reynolds number Rep =2u0a/ν, where u0

is the settling speed of an isolated particle of radius a, was therefore always small,
from 10−3 to 10−1. For rotation rates up to and including the low-frequency band
phase, the Reynolds number characterizing the fluid flow, Re= ΩR2/ν, where Ω is
the rotation rate of the cylinder, was in the range 1–10. In this regime the Stokes-flow
approximation is still valid. However, at the highest frequencies and lowest viscosities
the Reynolds number Re ∼ 100, while the experiments in Lipson & Seiden (2002)
and Breu et al. (2003) have even higher Reynolds numbers. Thus our simulations are
most relevant to the low-frequency patterns observed in Matson et al. (2003).

The low-frequency banding is accompanied by a secondary axial flow, so that
particles move on obliquely circulating trajectories. Since the Reynolds number of
the rotating medium is finite (Re ∼ 1), it is of interest to discover whether the
secondary flow and the low-frequency bands can exist without fluid inertia. The
present paper was motivated by three questions raised by the experiments in Matson
et al. (2003). First, we aimed to determine the dimensionless group or groups governing
the non-equilibrium pattern formation, second, to determine the characteristic length
scales in the system and, third, to explore the mechanism for the formation of axial
concentration bands. To this end, we have carried out numerical simulations within
the Stokes-flow approximation, in which the Reynolds number is identically zero. The
hydrodynamic flow fields around each particle are approximated by a Stokeslet, with
an additional flow field generated by the no-slip boundary condition on the surface
of the cylinder. We have developed a relatively efficient and highly parallelizable
simulation, which can follow the motion of approximately 104 particles for several
hundred rotations of the cylinder. We expect our simulations to be valid in the
viscous-dominated regime, where the inertial parameters Re and Rep are less than
unity, and for dilute suspensions with volume fraction φ ∼ 0.01, where the mean
interparticle spacing is large compared with the particle size.

At low rotational frequencies, the competition between gravity and the viscous
drag of the rotating fluid leads to a number of qualitatively distinct non-equilibrium
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patterns (Matson et al. 2003). The simulations showed similar patterns, including the
formation of axial bands of high and low concentration. However, we did not observe
the more pronounced segregation seen at higher rotational frequencies, which we
suspect is inertial in origin (Lipson & Seiden 2002). The simulations addressed several
outstanding questions related to non-equilibrium pattern formation in these systems.
In particular we identified the mean interparticle spacing as the characteristic length
for low-frequency pattern formation. There is a corresponding dimensionless frequency
that specifies the non-equilibrium particle distribution. We discovered an order
parameter that separates a low-frequency segregated phase where the particles tend to
be densely packed on the container wall and a high-frequency dispersed phase where
the particles are more or less uniformly distributed throughout the container volume.
There may be a non-equilibrium phase transition separating these phases. We have
found that, at higher rotational frequencies, hydrodynamic dispersion is sufficient to
counteract the segregation expected from centrifugal forces, explaining a well-known
but little understood phenomena that already has commercial applications in growing
cell cultures. Finally, the simulations reproduced the experimental observation of
axial segregation, where regular variations in particle concentration appear along the
cylinder axis. We will show that qualitatively similar segregation occurs in an oscil-
lating gravitational field, suggesting that instabilities in the settling of transversally
inhomogeneous suspensions amplify small axial variations in particle concentration.

2. Simulation method
The model we wish to simulate is a suspension of rigid spheres in a cylinder filled

with a viscous fluid. The cylinder is rotating about its symmetry axis, which is held
horizontal. The particles are monodisperse with radius a ∼ R/100, where R is the
radius of the cylinder. The particles are assumed to be sufficiently large that Brownian
motion can be neglected. The suspending fluid is Newtonian and sufficiently viscous
that all inertial forces can be neglected. We make further simplifications based on
the low volume fraction of the dispersed suspension. Thus we will approximate the
hydrodynamic interactions between particles by the far-field terms, which avoids
lengthy calculations of configuration-dependent induced forces. We expect these
approximations to be valid when the fluid viscosity is sufficiently large, the angular
velocity of the cylinder is sufficiently small, and the volume fraction occupied by the
particles is much less than unity. All these conditions are fulfilled by many of the
experiments in Matson et al. (2003).

The equation of motion of a particle i with mass m, in a frame rotating with
angular velocity Ω , can be written as

m
dui

dt
+ 2mΩ × ui = mB g − mBΩ × (Ω × r i) +

∫∫
σ dsi , (2.1)

where the buoyancy-corrected mass, mB , accounts for the force due to pressure
gradients in the rotating fluid arising from the centrifugal and gravitational forces.
Integration of the fluid stress on the particle surface results in a drag force that
depends on the configuration of neighbouring particles.

The magnitudes of the different terms in (2.1) can be estimated as follows. The
inertial terms on the left-hand side including the Coriolis force are of order mΩu0.
The gravitational and centrifugal forces are of order mBg and mBΩ2R respectively,
while the drag force is of order ηau0 ≈ mBg. Laboratory experiments (Lipson & Seiden
2002; Breu et al. 2003; Matson et al. 2003) have used a cylinder with radius R ≈ 1 cm



186 J. Lee and A. J. C. Ladd

x

y

r

θ

P

Ω

A

(a) (b)

(c) (d )

C1

C2

Figure 1. Dynamics of an isolated particle in a rotating medium. (a) The coordinate system
used in (2.3); gravity is pointing along the negative y-direction and the z-axis is coincident
with the axis of the cylinder. (b) The circles C1 (dashed) and C2 (bold) describe the locus of
points of zero radial and angular velocity. (c) A particle placed near the unstable equilibrium
point P , shown in (b), spirals outwards, eventually reaching a limiting trajectory confined by
the cylinder wall. (d) When D2 > 1, the drag force from the rotating fluid is insufficient to
overcome the gravitational force and the particles move directly to the stagnation point A.

and a typical angular frequency 1–5 s−1. However, the settling velocity has varied
considerably, from 0.03 to 0.4 cm s−1 (Matson et al. 2003) to speeds in excess of several
cm s−1 (Lipson & Seiden 2002; Breu et al. 2003). It follows that in the experiments
described by Matson et al. (2003) inertial forces are generally small in comparison
with gravitational and centrifugal forces, while in the experiments described by
Lipson & Seiden (2002) and Breu et al. (2003), inertial forces are significant. The
present simulations are intended to approximate the experimental situation in Matson
et al. (2003) and thus ignore inertial forces.

The equation of motion (2.1) for point particles in a rotating Stokes flow therefore
reduces to a force balance between gravitational, centrifugal, and viscous forces:

Fj = mB g + mBΩ2rj = ξ [uj − u(rj )], (2.2)

where ξ = 6πηa is the friction coefficient and u(rj ) is the fluid velocity at particle
location rj . The force balance in (2.2) can be calculated in the rotating frame, in which
g varies in time and u(rj ) = 0 for a single particle. If, however, we use a space-fixed
frame with the origin of the coordinate system along the centreline of the cylinder
then g is constant in time, while for a single particle u(rj ) =Ω × rj .

2.1. Single-particle dynamics in a rotating fluid

A non-neutrally buoyant particle in a fluid that is rotating about a horizontal
axis experiences a gravitational force −mBg ŷ and a centrifugal force mBΩ2r r̂ (see
figure 1a). In isolation these forces give rise to a settling velocity −us ŷ, where
us = mBgξ−1, and a centrifuging velocity uc r̂ , where uc = mBΩ2rξ−1. The velocity u
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of an isolated particle located at r is then (2.2)

ur = us

(
r

D1R
− sin θ

)
, uθ = us

(
r

D2R
− cos θ

)
. (2.3)

D1 = g/(Ω2R) and D2 = us/(ΩR) are independent dimensionless numbers describing
the relative magnitudes of the three forces (gravitational, centrifugal, and Stokes
drag) acting on the particle. Equating ur and uθ to zero yields two circles (centres
C1 and C2), with diameters of D1R and D2R, on which velocity components vanish
(figure 1b). Usually a particle follows the local stream velocity, but it goes against the
stream inside the circle C2, where the downward gravitational force is larger than the
upward drag force. Similarly, a particle usually migrates toward the cylinder wall, but
moves towards the central axis inside the circle C1 where the downward gravitational
force is larger than the upward centrifugal force. The intersection of these circles, P ,
is a point of unstable equilibrium, where all three forces balance, and is the dynamical
centre of this system. A particle initially placed near this point will spiral outwards,
eventually ending up with a limiting closed trajectory determined by the cylinder wall
(figure 1c). A qualitative prediction of the limiting trajectories of a single particle can
be obtained from the size of these circles within a finite-radius cylinder. For example,
if D2 > 1 then a particle cannot have a closed trajectory; instead it moves directly
towards the point A in less than one period, A being the lower intersection of the
circle C2 and the cylinder wall (figure 1d). Under the conditions of the laboratory
experiments, D1 ∼ 100–1000 and an isolated particle has a nearly circular trajectory
with its origin displaced along the positive x-axis (figure 1a).

2.2. Point particles confined in a rigid cylindrical wall

In a multiparticle suspension, hydrodynamic interactions result in additional contribu-
tions to the particle velocities, through perturbations to the fluid flow field u(r). In
the creeping-flow limit, the fluid velocity field u(r) due to a point force F located at
r0 can be written as

u(r) = G(r, r0) · F, (2.4)

where G(r, r0) is the Green’s function of the Stokes equations in a bounded cylindrical
domain of infinite length. The calculation of G will be described in detail in §§ 2.3 and
2.4. Given an expression for the Green’s function, the particle velocity can be divided
into the Stokes velocity and that due to the hydrodynamic interaction with the other
particles and with the cylinder wall:

uj =
Fj

ξ
+

∑
i �=j

G(rj , r i) · Fi . (2.5)

In this equation, the redistribution of the force density on the particle surface, which
is described by stresslets and higher moments, has been ignored. This important sim-
plification eliminates the need for time-consuming linear algebra and makes it feasible
to simulate 104 and in some cases 105 particles. Equation (2.5) is valid whenever the
mean interparticle separation is large compared with the particle size, as is generally
the case in the experiments described in Matson et al. (2003). We used a fourth-
order Runga–Kutta method to solve the differential equations ṙj = uj for the particle
positions.

The Green’s function for Stokes flow in an unbounded domain is translationally
invariant, G(rj , r i) = T(rj − r i), where T(r) = (1+ r r/r2)/(8πµr) is the Oseen tensor.
In a bounded domain, an image system is required to satisfy the no-slip boundary
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condition on the surface of the domain. Image systems have been proposed for a
plane (Blake 1971), for an infinite cylinder (Liron & Shahar 1978) and for a sphere
(Maul & Kim 1994). Higher-order effects of the cylindrical boundary were considered
by Hirschfeld, Brenner & Falade (1984) and Higdon & Muldowney (1995).

Our work is based on the method of Liron & Shahar (1978), who used the general
solution to the Stokes equation in a cylindrical geometry (Happel & Brenner 1965) to
construct the additional flow field caused by the zero-velocity boundary condition on
the cylinder surface. The velocity field u(r) = v(r)+w(r) is broken down into a source
field v(r) and a cancelling field w(r), which are calculated separately. The cancelling
field is such that w(R) = −v(R) at all points R on the cylinder surface. In the next
two sections, we show how these flow fields can be calculated in a time proportional
to the number of particles.

2.3. Order-N algorithm for the source field

The source field has nine components vα
β , corresponding to the three force directions of

the Stokeslet α and the three directions of the velocity β , where α, β are components
r, θ or z in a cylindrical coordinate system. Here, only vr

r is treated in detail. The
other components of the source field have expressions similar to that for vr

r and can
be derived by the same procedure using the functions provided in Appendix A. The
equations given there are presented in a way that is closely connected to the numerical
implementation.

Liron & Shahar (1978) considered the flow field due to a single Stokeslet, and
their solution was developed in a coordinate system whose origin was situated at the
Stokeslet. However, for N Stokeslets it is more convenient to choose an origin along
the centreline of the cylinder. Then the radial velocity vr

r (rj ; rN−1) at rj = (rj , θj , zj )
due to the other N − 1 Stokeslets with radial components Fr (r i) is given by the
following expression:

4π2µvr
r (rj ; rN−1)

=

N∑
i=1
i �=j

Fr (r i)

{
cos(θj − θi)

+∞∑
k=−∞

cos k(θj − θi)

∫ ∞

0

dλ f 1
1 (λ, rj , k, ri) cos λ(zj − zi)

+ sin(θj − θi)

+∞∑
k=−∞

sin k(θj − θi)

∫ ∞

0

dλ f 1
2 (λ, rj , k, ri) cos λ(zj − zi)

}
. (2.6)

The functions f 1
1 and f 1

2 are products of modified Bessel functions of the second
kind (Abramowitz & Stegun 1972). When rj > ri ,

f 1
1 (λ, rj , k, ri) = Kk(λrj ){Ik(λri) − λriI

′
k(λri)}

+ 1
2
λrj {Kk−1(λrj )I

′
k−1(λri) + Kk+1(λrj )I

′
k+1(λri)} (2.7)

and

f 1
2 (λ, rj , k, ri) = − 1

2
kKk(λrj )Ik(λri)

+ 1
4
λrj {Kk−1(λrj )I

′
k−2(λri) − Kk+1(λrj )Ik+2(λri)}, (2.8)

where I ′ indicates a derivative with respect to the argument. The integer k identifies
the angular Fourier mode and the variable λ is the axial wavevector. When rj < ri ,
I and K should be interchanged throughout, the sign infront of the curly brackets
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in f 1
2 being changed from plus to minus. A complete description of the functions f l

m

with l, m =1, 2, 3 is given in Appendix A of Liron & Shahar (1978). However, our
final representation of the source field in (2.11) below does not involve f l

m.
Equation (2.6) is based on the coordinate difference between the observer particle

and the N − 1 source particles. A straightforward calculation of the velocity field at
each observer particle then requires of order N2 operations. The computational time
can be reduced to order N by separating the coordinates of the observer particle from
those of the other source particles. This is straightforward for the angular and the
axial coordinates, expanding the trigonometric functions into products of functions
of individual particle coordinates and rewriting (2.6) as

8π2µvr
r (rj ; rN−1) =

∫ ∞

0

dλ

+∞∑
k=−∞

4∑
γ=1

×
{

Po
γ (λ, k, θj , zj )

N∑
i=1
i �=j

Ps
γ (λ, k, θi, zi)f

r
r (λ, rj , k, ri)Fr (r i)

}
, (2.9)

where

f r
r (λ, rj , k, ri) = f 1

1 (λ, rj , k + 1, ri) + f 1
1 (λ, rj , k − 1, ri)

+ f 1
2 (λ, rj , k + 1, ri) − f 1

2 (λ, rj , k − 1, ri), (2.10)

and the phases Po,s
γ are given in Appendix A.

Although (2.9) depends only on each particle’s coordinate, not on the difference
between the latter, it still requires a computational time proportional to N2 to calculate
the source field. The radial coordinate of the observer particle is not completely
separated from those of the other source particles, because there are two different
expressions for (2.10), depending on whether the radial coordinate of the source
particle, ri , is larger or smaller than the radial coordinate of the observer particle,
rj . This difficulty can be circumvented by first ordering the particles according to
radial position. Then the indexes of the particles indicate whether rj > ri , and the
functionality of (2.10), is predetermined. For any k and λ, the sum over the particles
need be performed only once and then modified by an order-1 operation for each
particle. The re-ordering of the particle indexes must be done each time the coordinates
are updated, which is another order-N calculation. Here, we have sorted the indexes in
ascending order, so that rj > ri when j > i. Then (2.9) can be decomposed into two sets
of summations, one with i < j involving Ik(λri) and one with i > j involving Kk(λri):

8π2µvr
r (rj ; rN−1) =

∫ ∞

0

dλ

+∞∑
k=−∞

4∑
γ=1

5∑
ε=1

×
{

Po
γ (λ, k, θj , zj )Ko

ε(λ, k, rj )

j−1∑
i=1

Ps
γ (λ, k, θi, zi)Is

ε(λ, k, ri)Fr (r i)

+ Po
γ (λ, k, θj , zj )Io

ε(λ, k, rj )

N∑
i=j+1

Ps
γ (λ, k, θi, zi)Ks

ε(λ, k, ri)Fr (r i)

}
,

(2.11)

The functions Ko,s
ε and Io,s

ε , referring to the source and observer points, are given
in Appendix A.
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Using (2.11), the computed source field scales linearly with N . The other components
of the source field have the same structure as (2.11), but with different functions for
Ps

γ , Ko,s
ε and Io,s

ε , as provided in Appendix A.

2.4. Order-N algorithm for the cancelling field

The cancelling field, w(r), is the solution to the Stokes equations that satisfies the
boundary condition w(R) = −v(R; rN ), where R =(R, θ, z) represents a point on the
cylinder wall. The combined velocity field, u(r) = v(r) + w(r), includes the hydro-
dynamic interactions among all N particles at the Oseen level and satisfies the no-slip
boundary condition on the cylinder to leading order in the separation between the
particles and the cylinder surface.

Happel & Brenner (1965) derived w(r) in a cylindrical coordinate system whose
origin is located along the symmetry axis:

wr (r, θ, z) =

+∞∑
k=−∞

∫ ∞

0

dλ

[
cos(kθ + απ) cos(λz + δπ) πk(λ)λ

2rI ′′
k (λr)

+ cos(kθ + αψ ) cos(λz + δψ ) ψk(λ)λI
′
k(λr)

− sin(kθ + αω) cos(λz + δω) ωk(λ)
k

r
Ik(λr)

]
, (2.12)

wθ (r, θ, z) =

+∞∑
k=−∞

∫ ∞

0

dλ

[
sin(kθ + απ) cos(λz + δπ) πk(λ)

(
k

r
Ik(λr) − kλI ′

k(λr)

)
− sin(kθ + αψ ) cos(λz + δψ ) ψk(λ)

k

r
Ik(λr)

− cos(kθ + αω) cos(λz + δω) ωk(λ)λI
′
k(λr)

]
, (2.13)

wz(r, θ, z) =

+∞∑
k=−∞

∫ ∞

0

dλ

[
− cos(kθ + απ) sin(λz + δπ) πk(λ)(λ

2rI ′
k(λr) + λIk(λr))

− cos(kθ + αψ ) sin(λz + δψ )ψk(λ)λIk(λr)

]
, (2.14)

where πk(λ), ψk(λ) and ωk(λ) (dimensions [L3T −1]) are Fourier–Bessel components
of harmonic velocity potentials in the general solution of the Stokes equation in
cylindrical coordinates, while απ,ψ,ω and δπ,ψ,ω are phase angles that indicate sine and
cosine functions (Liron & Shahar 1978). In Liron & Shahar (1978), απ,ψ,ω and δπ,ψ,ω

are typically 0 or −π/2 because of their choice of coordinate system, in which a single
Stokeslet has angular coordinate 0. However, for N Stokeslets, απ,ψ,ω and δπ,ψ,ω are
unknowns to be determined by the boundary conditions, along with πk(λ), ψk(λ) and
ωk(λ).

Examination of (2.12)–(2.14) shows that the computation of the cancelling field
requires an inherently order-N algorithm. The dependence of the cancelling field on
the particle positions and forces is absorbed into the Fourier-transformed velocity
potentials πk , ψk and ωk and phases απ,ψ,ω and δπ,ψ,ω, which are to be determined
by matching the Fourier components of the source and the cancelling field on the
cylinder surface. Here, the cancelling fields due to N radial Stokeslets will be treated
in detail; angular and axial Stokeslets generate linearly superposable contributions to
πk , ψk and ωk , which can be constructed with the functions provided in Appendix B.
To match the source and cancelling fields, we rewrite the radial cancelling field, (2.12),
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in a form similar to the source fields:

wr (r, θ, z) =

∫ ∞

0

dλ

+∞∑
k=−∞

4∑
γ=1

Po
γ (λ, k, θ, z)

3∑
ι=1

Aγ ι
r (λ, k)Bι

r (λ, k, r), (2.15)

where Br is a three-component vector:

B�
r (λ, k, r) = (λ2rI ′′

k (λr) λI ′
k(λr) kIk(λr)/r), (2.16)

and Ar is a 4 × 3 matrix,

Ar (λ, k) =

⎛⎜⎜⎝
cos απ cos δπ πk cos αψ cos δψ ψk − sinαω cos δω ωk

− cos απ sin δπ πk − cosαψ sin δψ ψk sinαω sin δω ωk

− sinαπ cos δπ πk − sinαψ cos δψ ψk − cos αω cos δω ωk

sinαπ sin δπ πk sinαψ sin δψ ψk cos αω sin δω ωk

⎞⎟⎟⎠. (2.17)

The components of wθ (R) (2.13) and wz(R) (2.14) can be rearranged in a similar
fashion:

wθ (r, θ, z) =

∫ ∞

0

dλ

+∞∑
k=−∞

4∑
γ=1

Po
γ (λ, k, θ, z)

3∑
ι=1

Aγ ι
θ (λ, k)Bι

θ (λ, k, r), (2.18)

wz(r, θ, z) =

∫ ∞

0

dλ

+∞∑
k=−∞

4∑
γ=1

Po
γ (λ, k, θ, z)

2∑
ι=1

Aγ ι
z (λ, k)Bι

z(λ, k, r); (2.19)

B�
θ (λ, k, r) = (kλI ′

k(λr) − kIk/r kIk/r(λr) λI ′
k(λr)), (2.20)

Bz(λ, k, r) =

(
λ2rI ′

k(λr) + λIk(λr)
λIk(λr)

)
; (2.21)

Aθ (λ, k) =

⎛⎜⎝− sinαπ cos δπ πk − sinαψ cos δψ ψk − cos αω cos δω ωk

sinαπ sin δπ πk sinαψ sin δψ ψk cos αω sin δω ωk

− cos απ cos δπ πk − cos αψ cos δψ ψk sinαω cos δω ωk

cosαπ sin δπ πk cos αψ sin δψ ψk − sinαω sin δω ωk

⎞⎟⎠, (2.22)

Az(λ, k) =

⎛⎜⎝− cos απ sin δπ πk − cos αψ sin δψ ψk

− cos απ cos δπ πk − cos αψ cos δψ ψk

sinαπ sin δπ πk sin αψ sin δψ ψk

sinαπ cos δπ πk sin αψ cos δψ ψk

⎞⎟⎠. (2.23)

Beginning with (2.9), the radial component of the source field at the cylinder surface
due to N radial Stokeslets, vr

r (R; rN ), can be written in a similar fashion to (2.15):

8π2µvr
r (R; rN ) =

∫ ∞

0

dλ

+∞∑
k=−∞

4∑
γ=1

{
Po

γ (λ, k, Θ, Z)

×
N∑

i=1

Ps
γ (λ, k, θi, zi)f

r
r (λ, R, k, ri)Fr (r i)

}
, (2.24)

where R = (R, Θ, Z) and f r
r is given in Appendix B. There are similar expressions for

the angular and axial velocity fields on the surface of the cylinder.
The boundary conditions vr (R) + w(R) = 0 then give three sets of equations for

the components of Ar , Aθ and Az. Matching terms between (2.15) and (2.24) and
the corresponding equations for the angular and axial components, we obtain the
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following equations:

3∑
ι=1

Aγ ι
r (λ, k)Bι

r (λ, k, R) =
−1

8π2µ

N∑
i=1

f r
r (λ, R, k, ri)Fr (r i)Ps

γ (λ, k, θi, zi), (2.25a)

3∑
ι=1

Aγ ι
θ (λ, k)Bι

θ (λ, k, R) =
−1

8π2µ

N∑
i=1

f r
θ (λ, R, k, ri)Fr (r i)Ps

γ (λ, k, θi, zi), (2.25b)

2∑
ι=1

Aγ ι
z (λ, k)Bι

z(λ, k, R) =
−1

8π2µ

N∑
i=1

f r
z (λ, R, k, ri)Fr (r i)Ps

γ (λ, k, θi, zi), (2.25c)

where f r
r , f r

θ and f r
z are products of modified Bessel functions; explicit expressions

are given in Appendix B. The components of Ps
γ are given in Appendix A.

Equations (2.25) can be solved simultaneously to yield the velocity potentials πk ,
ψk ωk and phases απ,ψ,ω, δπ,ψ,ω from which the components of each A matrix can be
calculated. However, we note that the different A matrices are just permutations of
a generic � matrix, and the cancelling field can therefore be obtained directly from
a combined matrix equation:

�(λ, k) =
−1

8π2µ

N∑
i=1

�(k, λ, r i , R)�−1(λ, k, R), (2.26)

where

� =

⎛⎜⎝cos απ cos δπ πk cos αψ cos δψ ψk − sinαω cos δω ωk

cos απ sin δπ πk cos αψ sin δψ ψk − sinαω sin δω ωk

sinαπ cos δπ πk sinαψ cos δψ ψk cos αω cos δω ωk

sinαπ sin δπ πk sinαψ sin δψ ψk cos αω sin δω ωk

⎞⎟⎠ (2.27)

and

�(R) =

⎛⎝λ2RI ′′
k kλI ′

k − kIk/R λ2RI ′
k + λIk

λI ′
k kIk/R λIk

kIk/R λI ′
k 0

⎞⎠ . (2.28)

where Ik ≡ Ik(λR). The 4 × 3 matrix � has components that have been arranged
according to the basis chosen for � and the velocity directions in �:

� = Fr (r i)

⎛⎜⎜⎝
cos kθi cos λzif

r
r − cos kθi cos λzif

r
θ − cos kθi cos λzif

r
z

− cos kθi sin λzif
r
r cos kθi sin λzif

r
θ cos kθi sin λzif

r
z

− sin kθi cos λzif
r
r sin kθi cos λzif

r
θ sin kθi cos λzif

r
z

sin kθi sin λzif
r
r − sin kθi sin λzif

r
θ − sin kθi sin λzif

r
z

⎞⎟⎟⎠ . (2.29)

After determining the elements of � from (2.26), the cancelling field at particle j ,
w(rj ), can be calculated using (2.15), (2.18) and (2.19). The contributions to the
matrix � from the angular and axial Stokeslets are included as additional terms in
the matrix �. Appendix B lists the complete matrix � including all three components
of the Stokeslets.

2.5. Discretization of the λ space and the λ= 0 contribution

Numerical calculations of the source and cancelling fields require that the infinite
sum over angular modes k be truncated at some kmax. In addition we employ periodic
boundary conditions in the axial direction, so that the integrations over λ in (2.11)
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Figure 2. Convergence of the velocity field, for (kmax, lmax) equal to (8, 8) (squares), (16, 16)
(circles), (32, 32) (triangles), (64, 64) (inverted triangles) and (128, 128) (diamonds). (a) The
radial velocities at various observer positions due to an external radial force on the source
particle. The source and observer particles are at the same angular and axial coordinates,
separated along the radial direction by ro − rs; rs =0.5R. (b) The radial velocities due to the
cancelling fields are evaluated at the source position.

and (2.15) are replaced by sums over a discrete set λl =2πl/L commensurate with the
length L of the cylinder. This sum is also truncated at some maximum wavenumber
lmax: ∫ ∞

0

dλ → 2π

L

∞∑
l=0

λl ≈ 2π

L

lmax∑
l=0

. (2.30)

It should be noted that our algorithm is only order N for a fixed number of Fourier
modes. For a fixed spatial resolution, where the number of Fourier modes grows
with the dimensions of the cylinder, it would scale as N5/3. A true order-N (or
rather N log N) method would require a spatial grid, with particle densities and
forces being interpolated on and off the grid. This would add additional complexity
and discretization errors, especially in a non-Cartesian geometry, and so was not
implemented in this work.

The long-range hydrodynamic interaction along the cylinder axis results in a
logarithmic divergence in the k = 0, l = 0 contribution. For example, in (2.7),

lim
λ→0

f 1
1 (λ, rj , 0, ri) =

⎧⎪⎨⎪⎩
− ln(λrj ) + 1

2
, rj > ri

− ln(λri) + 1 − 1

2

(
rj

ri

)2

, rj < ri.
(2.31)

These logarithmic divergences occur in both the source and the cancelling fields and
so the combined field remains finite. However, we must explicitly exclude these terms
from both the source and cancelling fields, as they are calculated separately in our
algorithm.

2.6. Convergence

The truncation of the infinite sum raises the question of convergence, specifically of
how many Fourier modes are necessary for a given accuracy. The convergence of the
finite Fourier–Bessel sum is mostly influenced by the separation along the radial
direction. Figure 2 shows that larger kmax and lmax values are necessary as the separa-
tion distance between the source and the observer particles decreases. In our
multiparticle simulations, kmax and lmax were determined on the basis of the
macroscopic patterns of particle density as well as the two-body results. For example,



194 J. Lee and A. J. C. Ladd

the low-frequency band structure first appeared with kmax � 16, lmax � 16, while kmax =
32, lmax =32 was used in most of our simulations.

2.7. Modified Bessel functions of the second kind

The Bessel functions Ik(λr) and Kk(λr) always appear together. Thus the exponential
divergence of Ik(λr) with increasing λr is cancelled by the corresponding exponential
decay in Kk(λr). However, in the order-N formulation, where Kk(λr) is stored
separately from Ik(λr), the Bessel functions must be modified to remove the

exponential terms Ĩk(λr) = e−λrIk(λr) and K̃k(λr) = eλrKk(λr). Ĩk and K̃k can be freely
used in place of Ik(λr) and Kk(λr), since the exponential terms always cancel.

For large orders, K̃k(λr) and Ĩk(λr) respectively diverge and vanish at small argu-
ments. This problem can be corrected by defining new Bessel functions with the
asymptotic behaviour explicitly taken out

Ī k(x) = e−βk (x)Ik(x),

K̄k(x) = eβk(x)Kk(x),

}
(2.32)

where

βk(x) =
√

k2 + x2 + k ln
x

k +
√

k2 + x2
. (2.33)

These functions are always well behaved and allow the simulations to be extended to
arbitrarily large kmax and lmax. Ī k(x) and K̄k(x) have the following recursion relations:

Ī k(x) = eβk+2−βk Ī k+2(x) +
2(k + 1)

x
eβk+1−βk Ī k+1(x), (2.34a)

K̄k(x) = eβk−βk−2K̄k−2(x) +
2(k − 1)

x
eβk−βk−1K̄k−1(x), (2.34b)

Ī−k(x) = eβk−β−k Ī k(x), (2.34c)

K̄−k(x) = eβ−k−βk K̄k(x). (2.34d)

2.8. Merits of the Fourier–Bessel expansion versus a residue sum

Liron & Shahar (1978) derived two alternative expressions for the velocity field due
to a Stokeslet in a pipe, one in terms of a Fourier–Bessel expansion and the other
as a doubly infinite sum of residues. Our methodology is based on the Fourier–
Bessel expansion. Although Liron & Shahar (1978) regarded the residue sum as
more suitable for computational purposes, since it leads to exponentially decaying
series, it has important shortcomings for simulations involving a large number of
Stokeslets. Firstly, the Fourier–Bessel expansion is easily adapted to a finite-length
periodic cylinder while the residue sum is used exclusively for a cylinder of infinite
length. Figure 3 gives for comparison the Fourier–Bessel sum and the residue sum
for different-length cylinders. When L > 2R, the periodic images are unimportant, as
the flow field due to the periodic source gets screened by the cylinder wall, but for
L ∼ R there is a substantial difference. Secondly, the Fourier–Bessel sum can be used
to calculate the effect of the wall on the Stokeslet itself, because it calculates the
additional cancelling velocity field w(r) separately from the unbounded velocity field
v(r), while the residue sum cannot. Lastly, the Fourier–Bessel sum is much faster
in large-N simulations since it can be calculated in order N whereas the residue
sum remains an order-N2 algorithm. We computed several trial flow fields using the
residue-sum method as an independent check on the correctness of the code.
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Figure 3. The flow field at (r, θ, z) = (0.7R, 0, 0.2R) due to a radial Stokeslet at (0.5R, 0, 0).
The ratio of the velocity in a cylinder of length L, obtained using the Fourier–Bessel sum uFB ,
and the velocity in an infinite cylinder, obtained using the residue sum uRS , is plotted as a
function of L/R.

3. Results and discussion
3.1. Radial pattern formation

Matson et al. (2003) reported several distinct particle distributions and flows in the
radial plane of a short cylinder (L < R), where the particle density can be assumed to
be uniform along the axial direction. Figure 4 shows the simulated particle positions at
a given time looking end on through the vessel as it rotates at frequencies comparable
with laboratory experiments. The different shadings of the particles indicate the
direction of motion, either up (light) or down (dark). The arrows in figures 4(b)
and 4(c) indicate the local fluid velocity in the laboratory frame.

At low rotational frequencies (figure 4a) the particles are segregated by the
gravitational force. The layer of particles next to the wall is lifted up by the rotation
of the cylinder, but in adjacent layers the gravitational force exceeds the viscous drag
from the fluid and particles slip down to the bottom reservoir. The hydrodynamic
interactions lead to a much higher settling velocity for a dense suspension than for isol-
ated particles and so the suspension remains largely settled on the base of the vessel.

At slightly higher rotational velocities, particles are ejected into the bulk fluid and
fall in a more or less semicircular arc. The settling particles generate a current of
displaced fluid, so that in the lower half of the cylinder we see a counter-rotating
(clockwise) flow, lifting particles off the base of the vessel and returning them to the
wall higher up. The cylinder cross-section is then divided into two different flows
(figure 4b): in the upper region the fluid rotates in the same direction as the cylinder
(counter-clockwise) whereas in the bottom region the flow rotates in the opposite
direction (clockwise).

As the rotational frequency increases, more particles are ejected further into the
bulk fluid, which results in the growth of the upper, corotating, region. In figure 4(b),
the top region has grown to be roughly equal in size to the bottom counter-rotating
region, filling the cylinder cross-section at the same time. Compared with figure 4(a),
the portion of the volume where particles are dispersed is increased considerably at the
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(a) (b)

(c) (d)

Figure 4. Snapshots of the steady-state particle distribution at different frequencies:
(a) Ωa/u0 = 3.33×10−2; (b) Ωa/u0 = 8.88×10−2; (c) Ωa/u0 = 14.4×10−2; (d) Ωa/u0 = 33.3 ×
10−2. The particle volume fraction φ = 4πn0a

3/3 ≈ 2 %; n0 is the number density averaged over
the whole cylinder. The cylinder is rotating counterclockwise and gravity is acting downwards.
The two different shades of grey indicate the sign of each particle’s velocity along the direction
of gravity: the lighter particles are moving upwards against gravity, while the darker particles
are moving downwards. The arrows in (b) and (c) illustrate the large-scale flow fields. A short
cylinder, L/R =0.4, is used to suppress the effects of axial density variations.

frequency shown in figure 4(b). However, the distribution is still very inhomogeneous,
and the thickness of the layer next to the wall, where particles are lifted by the
rotating cylinder, is only a monolayer thick for both (a) and (b).

At still higher speeds, more particles are ejected into the bulk and the top region
starts to dominate the flow; the bottom region shrinks and moves to the left, as shown
in figure 4(c). The majority of the particles now follow the rotation of the cylinder
and the particle reservoir on the bottom disappears. The region of particles lifted by
the motion of the cylinder wall has expanded well beyond a monolayer thickness. A
further increase in frequency erases the counter-rotating region completely, leaving
the particles uniformly distributed, as shown in figure 4(d). In this case the motion of
the particles and fluid approximates a rigid-body rotation.

3.2. Order parameter and dynamical phase transition

The particle motions illustrated in figure 4 suggest that the time-averaged angular
velocity of the particle phase, 〈θ̇〉 = 〈

∑N

i=1 θ̇i〉/N , may play the role of an order
parameter, distinguishing between the segregated phase, where the particle returns to
the sediment layer without crossing the centre of the cylinder, and the dispersed phase,
where the particles make complete rotations. We find that Q = 〈θ̇〉/Ω does indeed
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Figure 5. Rotational order parameter, Q = 〈θ̇〉/Ω , for different cylinder sizes and particle
concentrations: n0a

3 = 7.2 × 10−5, R = 100a (open squares); n0a
3 = 5.8 × 10−4, R =100a (open

triangles); n0a
3 = 4.7×10−3, R = 100a (open circles); n0a

3 = 4.7×10−3, R = 50a (closed circles);
n0a

3 = 9.2 × 10−3, R = 50a (closed diamonds). The order parameter is plotted versus different

dimensionless frequencies, Ωa/us in (a) and Ωd/us in (b), where d = n
−1/3
0 . The aspect ratio

of the cylinder L/R = 0.4.

show a sharp transition as a function of the rotational frequency of the cylinder, as
shown in figure 5, separating two distinct phases. Figures 4(a) and 4(b) correspond
to the segregated phase (Q ∼ 0), figure 4(c) corresponds to the transition regime and
figure 4(d) to the dispersed phase (Q ∼ 1).

The key parameters characterizing the behaviour of Q are based on the fluid
velocity Ωl, the particle settling velocity us = mBg/ξ and the centrifuging velocity
uc =mBΩ2l/ξ (see § 2.1); here l is a characteristic length, which is discussed below.
Thus at low Reynolds number the flow is characterized by the dimensionless ratios
us/Ωl and uc/Ωl. However, under the conditions of the laboratory experiments, the
centrifugal forces are relatively weak, with uc/(Ωl) ∼ 10−3, and thus the transition
in Q is determined by a single parameter, us/(Ωl), derived from the competition
between the particle up-flux due to the cylinder rotation and the particle down-flux
due to gravity.

Figure 5 shows the order parameter as a function of the rotational frequency of the
cylinder, Ω . Figure 5(a) shows that the transition frequency increases with the mean
particle concentration but is independent of cylinder size. This suggests that the
characteristic length is the mean interparticle separation, d = n

−1/3
0 , where n0 is

the average particle concentration. Figure 5(b) confirms this scaling and shows that
the order parameter is a universal function of the reduced frequency Ω� = Ωd/us .

A mass balance in the low-frequency segregated phase supports the selection of the
mean interparticle spacing as the characteristic length. At low frequencies, the up-flux
of particles occurs mainly in the monolayer region right next to the cylinder wall
(figures 4a, b), which lifts particles from the reservoir at the bottom to the upper half
of the cylinder with velocity ∼ΩR. The upward mass flow scales as Ṁ ∼ ΩRnaL,
where L is the length of the cylinder and the thickness of the monolayer is taken to
be proportional to the particle radius a. The down-flux occurs from sedimentation
over a cross-sectional area proportional to the cylinder radius: Ṁ ∼ unRL. In the
dense region, the mean settling velocity u is dominated by hydrodynamic interactions,
leading to a much higher settling velocity than for individual particles. The scaling of
the settling velocity can be determined from the functional form of the Oseen tensor
to be proportional to d−1; i.e. u ∼ usa/d . These fluxes balance when the dimensionless
angular velocity of the cylinder, Ω� = Ωd/us , is of order unity, in agreement with the
simulation results.
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Figure 6. (a) Initial time dependence of the rotational order parameter Q(t/tc) (tc is the
rotational period of the cylinder), for three different angular frequencies: Ω� = 0.80 (bottom,
dashed line); Ω� = 0.86 (middle, solid line); Ω� =1.07 (top, dotted line). (b) The power spectrum

at steady state Q̂(ωtc/2π), for the same rotational frequencies. The aspect ratio of the cylinder
L/R = 0.4, and the number of particles N = 5818.

At higher frequencies, Ω� > 1, the particles are dispersed over the whole container
volume, as illustrated in figure 4(d), and the mass balance is different. Now the up-
current of particles is distributed over a region proportional to R instead of a, while
the hindered settling velocity in the (dilute) dispersed phase is close to that of an
isolated particle, us . In this case the flux balance leads to a dimensionless frequency
ΩR/us and a characteristic length equal to the cylinder radius R. Thus the transition
from the segregated to the dispersed phase is accompanied by a change in scale of
the flow, from l ∼ n

−1/3
0 to l ∼ R.

The suspension was prepared in a macroscopically uniform state, for which the
order parameter Q = 1. Figure 6(a) shows the initial time dependence of Q(t) for a
narrow range of rotational frequencies, spanning the transition from the segregated
to the dispersed phase. The suspension reaches a stationary state after approximately
ten rotations of the cylinder in all cases. At the highest frequency (Ω� = 1.07), shown
by the dotted line, the order parameter fluctuates around Q(t) = 1, with a well-defined
period equal to tc, the rotational period of the cylinder. At the lowest frequency
(Ω� = 0.8), shown by the dashed line, the order parameter drops to zero over the
first five rotations and after that fluctuates around Q(t) = 0 with no obvious period.
At the transition frequency (Ω� = 0.86), shown by the solid line, the order parameter
shows large oscillations from Q(t) = 0 to Q(t) = 1, with a period much longer than tc.

The power spectrum at steady state, Q̂(ω), shown in figure 6(b), confirms the
qualitative impressions drawn from the time dependence. At the lowest rotational
frequency (Ω� =0.8) there is no substantial signal in the power spectrum, while at
the highest frequency (Ω� = 1.07) there is only a weak signal near ωtc/(2π) ∼ 1. In
contrast, at the transition frequency (Ω� = 0.86) there is a strong low-frequency peak,
which is at least suggestive of a dynamical phase transition. However, much larger
simulations would be necessary to confirm the cooperative dynamical behaviour that
signals a phase transition.

3.3. Dispersed phase and hydrodynamic dispersion

At higher rotational velocities, Ω� > 1, the angular particle distribution becomes
more uniform while for Ω� ≈ 1.5 a homogeneous distribution develops over the
entire container volume. At these frequencies the particle phase is apparently rotating
with the cylinder as a rigid body. As discussed in § 2.1, it is straightforward to
show that non-interacting particles in a rotating flow bounded by the cylinder wall
eventually reach a single limiting trajectory (Roberts, Kornfeld & Fowlis 1991; Lee &
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Ω� D (×10−2R2/tc)

2.00 2.99
2.66 1.61
3.33 1.07

Table 1. The coefficient of hydrodynamic dispersion measured from the simulations.

Ladd 2002), and therefore remain segregated. However, even when the suspension is
very dilute, with the particles occupying only 2 % of the total volume, they can be
uniformly dispersed throughout the whole vessel, as shown in figure 4(d).

Experimentally, particles rotating at this angular frequency also show an apparent
rigid-body rotation (Matson et al. 2003) when the fluid is viscous (η > 60 cP). Empirical
observations of this dispersed phase have led to the development of commercial
bioreactors utilizing this peculiar flow to grow cell cultures in a simulated microgravity
environment (Botchwey et al. 2004). However, an explanation of how the cells remain
dispersed indefinitely has been missing. Previous investigations of the dynamics
of rotating bioreactors focused on single-particle motion (Botchwey et al. 2004;
Hammond & Hammond 2001) and were unable to explain the observed dispersion.

Our numerical calculations demonstrate that hydrodynamic interactions lead to a
randomizing of the particle motion and can, under some circumstances, disperse the
particles essentially uniformly throughout the vessel in the steady state. A detailed
examination of the simulated particle motion shows that gravity perturbs the freely
rotating trajectory, imposing an additional circular trajectory counter to the flow
with the same period as the rotation of the cylinder, tc = 2π/Ω , and diameter close to
ustc/2  R. This small gravitational perturbation generates a quasi-diffusional motion
of the particles through hydrodynamic interactions (Caflisch & Luke 1985), which
counters the centrifugal segregation and leads to a roughly uniform distribution in
the cylinder. The strength of the hydrodynamic dispersion can be estimated from the
mean-square displacements of the particles. In table 1, we approximate the position-
dependent diffusion coefficient by a diffusion coefficient that has been averaged
over the entire volume of a short cylinder (figure 4). We observe a scaling of the
hydrodynamic diffusion coefficient given by D/(Ru0) ∝ Ω�−2, over the narrow range
of frequencies for which a uniform particle distribution is observed, but we have no
explanation for this scaling as yet.

The measured hydrodynamic diffusion coefficient can be used to obtain a
semiquantitative steady-state mass balance:

1

r
∂r (rJr ) = 0, Jr =

mBΩ2rn

ξ
+ D∂rn. (3.1)

Here Jr is the radial mass flux and D is the hydrodynamic diffusion coefficient
given in table 1. Figure 7 shows for comparison the theoretical radial-concentration
profile and the results of simulations, at three different frequencies. At the lowest
frequency the concentration profile is practically flat, meaning that hydrodynamic
dispersion is sufficient to overwhelm the centrifugal acceleration yet the cylinder is
rotating sufficiently rapidly that there is no gravitational segregation either. At higher
frequencies the centrifugal force begins to outweigh the diffusive fluxes and there is a
build-up of particle concentration at the cylinder wall. Experimental results (Lipson &
Seiden 2002; Matson et al. 2003) show additional inhomogeneous structures at high
rotational frequencies, which we attribute to fluid inertia. Our Stokes-flow simulations
show just an axially uniform build-up of particle concentration on the cylinder wall.
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Figure 7. Equilibrium concentration profiles at three different frequencies within the dispersed
phase. The theoretical predictions (lines) are compared with the simulation results (symbols)
for three values of Ω�: Ω� = 2.00 (solid line and triangles); Ω� = 2.67 (dashed line and circles);
Ω� = 3.33 (dotted line and squares).

3.4. Low-frequency band phase in a long cylinder

For longer cylinders, L/R > 2.0, the transition shown in figure 5 is delayed by
additional axial-density fluctuations and now occurs in the range 0.9 <Ω� < 1.4. The
low-frequency band structure emerges during this transition. At the low-frequency end
of the transition, clusters start to settle through the centre of the cylinder, resulting
in the growth of axial-density perturbations. Empirically we observe that around
Ω� =1, an axial-density perturbation with a well-defined wavelength starts to emerge.
As Ω� increases, the bands become more stable, and around Ω� ≈ 1.3 we observe
a time-independent band structure with a wavelength approximately equal to the
cylinder diameter. At still higher frequencies the stability decreases, so that bands
disappear and reappear with a lifetime of approximately 20 rotations of the cylinder.
The magnitude of the density perturbation decreases at higher Ω�, eventually leading
to a homogeneous distribution of particles over the entire container volume at around
Ω� ≈ 1.5.

The static structure factor of the three most unstable axial modes are plotted in
figure 8(a) as a function of time measured in complete rotations of the cylinder.
The initial particle distribution is uniform and random along a cylinder of length
L =6.2R; periodic boundary conditions are used in the axial direction. After
approximately 100 revolutions of the cylinder at Ω� = 1.3, large-amplitude density
fluctuations develop with a wavelength roughly equal to the cylinder diameter,
λ=6π/L ∼ π/R. This pattern persisted for at least another 100 cylinder rotations,
after which the simulation ended.

Figure 9 shows ‘snapshots’ from a numerical simulation of approximately 12 000
non-Brownian spheres in a cylinder of length L = 6.2R, rotating at a reduced
frequency Ω� =1.3. Coherent patterns of particle density and fluid flow coexist in
a non-equilibrium stationary state. The fluid motion is shown in figure 9 by white
arrows. The density profile along the cylinder axis is roughly sinusoidal, with a well-
defined wavelength equal to the cylinder diameter and magnitude 0.3n0 (figure 8b).
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Figure 8. Low-frequency band phase; L/R = 6.2, Ω� = 1.3. (a) The static structure factor
along the axial direction is plotted against the number of cylinder rotations for different
wavevectors, λ= 2π/L, λ= 6π/L and λ= 8π/L. (b) The average number density along the axial
direction during the last 100 rotations.

Figure 9. Axial bands of high and low concentration in a rotating suspension. The lighter
particles are moving to the right, while the darker particles are moving to the left. The fluid
flow is indicated by the white arrows. Gravity is pointing into the plane of the paper in the
upper figure (top view) and downward in the lower figure (front view). The top view of the
cylinder shows particles organized into bands with regions of high concentration marked by
the heads of the pair of arrows. The front view at the same instant shows the generation of
secondary axial flows. Particles converge into high-concentration regions while settling from
the top and spread out as they reach the bottom wall.

Quantitatively similar variations in particle concentration were observed in laboratory
experiments under comparable conditions by Matson et al. (2003).

The stability of the low-frequency band structure is sensitive to whether the length
of the cylinder, L, is commensurate with the wavelength of the band structure. With
Ω� = 1.3 and L =6.2R, we observed a stable band structure with three peaks in the
density profile. However, with L =7.0R the number of peaks alternated over time
between three and four. This suggests that the low-frequency band structure has an
intrinsic wavelength which is independent of L for sufficiently long cylinders, such
that L � R.
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(a)

(b)

Figure 10. Snapshots of particle distributions generated by an oscillating gravitational field
in the vertical direction, g = g0 sin(πus/Rt), (a) including the flow field generated by the no-slip
boundary condition on the cylinder wall and (b) excluding this flow field. The lighter particles
are moving to the right, while the darker particles are moving to the left. Gravity is acting
downward at the time of the snapshots.

3.5. Axial instability

We suspect that both the confinement and the cross-section of the vessel play a crucial
role in the development of the steady-state density and flow patterns (Lee & Ladd
2005). It has long been known that a horizontal line of settling particles is unstable
to small perturbations in particle position (Crowley 1971). Particles slightly closer
together than average fall faster, owing to the stronger hydrodynamic interaction,
drawing more particles towards them and leading to a buckling instability. We
propose that axial variations in particle concentration can be amplified by a similar
mechanism; the high-density regions fall faster, drawing more particles into these
regions (see figure 9) in a flow that is reminiscent of the classical Rayleigh–Taylor
instability. The circular cross-section of the vessel plays a crucial role in the develop-
ment of this instability, diverting the fluid up-current away from the settling particles
and minimizing hindered settling. By contrast, in a homogeneous suspension the fluid
backflow reduces the velocity of the more concentrated regions and stabilizes the sus-
pension. The amplification of axial-density fluctuations therefore requires a variation
in particle concentration in the radial plane to allow room for the fluid to flow around
the particles. Both experiments and numerical simulations show that the axial bands
disappear when the particle distribution in the radial plane approaches homogeneity.

The proposed mechanism is further supported by simulations with a stationary
cylinder and a time-dependent gravitational field. An initially homogeneous suspen-
sion in a constant gravitational field settles into a dense pack of particles, uniformly
distributed in the axial direction. This is consistent with the expected stability of a
settling suspension (Kynch 1952). Even a spatially inhomogeneous suspension can
be stable (Acrivos & Herbolzheimer 1979) if the density is always increasing in the
direction of gravity. However, if the direction of the gravitational field is reversed,
the settled particle pack is now unstable to a Rayleigh–Taylor type instability (Völtz,
Pesch & Rehberg 2002). If the time between reversals of the gravitational field is
sufficient to allow the particles to settle out then sharp bands of high and low
concentration develop in the axial direction after a few cycles of settling and reversal. A
similar segregation occurs in an oscillating gravitational field, as shown in figure 10(a),
when the period of oscillation is similar to the time for a particle to settle by a distance
equal to the cylinder diameter. The distribution of particles becomes elongated in the
vertical direction, so the settling becomes less hindered and segregation is reinforced.
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The wavelength of the bands is again comparable with the cylinder diameter but the
segregation is stronger, leading to dense bands of particles interspersed with pure fluid.

Confinement plays a crucial role in the selection of the dominant wavelength of
the axial-density perturbations. Screening of the hydrodynamic interactions beyond
the cylinder diameter precludes the growth of density perturbations with wavelengths
greater than 2R. Figure 10(b) shows a simulation where the cancelling field from
the non-slip boundary condition on the cylinder wall has been neglected. The initial
condition was constructed so that the longest-wavelength density variation spanned
the length of the cylinder. The evolving concentration profile tends to be dominated
by the longest-wavelength perturbation in the initial condition (figure 10b), but all
wavelengths are unstable and there is no mode selection.

3.6. Comparison with experiment

Matson et al. (2003) reported various distinctive non-equilibrium patterns of density
and flow, found by direct observation, along the axial direction of a long cylinder,
L � R. They treated the rotational period of the cylinder and the fluid viscosity as
separate parameters, while our analysis suggests that they form a single dimensionless
variable at low Reynolds numbers. Thus we would expect all the phase boundaries
to be straight lines, which is only a qualitative approximation to the experimental
observations. However, the low-frequency phase boundaries are roughly linear with
a slope of −1, as would be expected from our prediction of a single dimensionless
frequency. This can be seen most clearly in figure 10 of Matson et al. (2005).

Our simulations and scaling analysis predict that the frequency of the phase
boundaries should be independent of the size of the cylinder and proportional to
the particle size at constant viscosity. We can compare these predictions with recent
data for the lowest-frequency phase boundaries (Matson, Ackerson & Tong 2006),
which are the ‘granular bed’ to ‘finger flow 1’ boundary (GB/F1), the ‘finger flow 1’
to ‘finger flow 2’ boundary (F1/F2), the ‘finger flow 2’ to ‘low-rotation-rate-transition’
boundary (F2/LT) and the ‘low-rotation-rate-transition’ to ‘stable-bands’ boundary
(LT/SB). Table 1 of Matson et al. (2006) shows a complicated scaling of the phase
boundaries, but the ratio βa/αa is roughly proportional to particle size for the
F1/F2, F2/LT and LT/SB phase boundaries. Moreover there is little dependence on
cylinder size, in agreement with the data shown in figure 5(a). There are substantial
discrepancies at the lowest-frequency transition, GB/F1. We think the reason may be
that our simulations include only the far-field hydrodynamic interactions, while the
short-range interactions are elastic collisions. Thus our simulations fail noticeably at
low frequencies, where the particles are heterogeneously distributed and higher-order
hydrodynamic interactions from stresslets and lubrication forces play an important
role in determining the local structure and settling velocity.

We also predict a weak n
1/3
0 dependence of the transition frequency on

concentration, but this has not yet been measured experimentally for the low-
frequency transitions. Finally, the short-range lubrication forces between particles and
cylinder wall will enhance the upward drag force on the particles over what we have
calculated. This explains why the transition between the low-frequency segregated
phase and the high-frequency dispersed phase is observed experimentally in a slightly
lower-frequency range, 0.8 <Ω� < 1.1, than the range we calculated, 0.9 <Ω� < 1.4.

4. Conclusions
A rotating suspension of settling particles exhibits rich and complex

dynamics (Lipson & Seiden 2002; Breu et al. 2003; Matson et al. 2003, 2005). We have
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developed an efficient numerical simulation method, including only far-field
hydrodynamic interactions, which is sufficient to recover the dynamics at moderate
rotational frequencies. The simulation results led to a new order parameter,
Q = 〈θ̇〉/Ω , which quantitatively characterizes the radial-density and radial-flow
patterns. A possible dynamic phase transition is suggested by the behaviour of Q(Ω�)
in the low-frequency domain, where the drag on the particle phase from the rotating
fluid is competing against the gravitational force. The contribution of hydrodynamic
interactions to the settling velocity of particles makes the interparticle separation
distance the key length scale in the transition region, which is then characterized by
a single dimensionless frequency Ω� =Ωd/us . The hydrodynamic interactions lead to
a strong dispersion even when the particle concentration is small. This dispersion is
sufficient to counteract the centrifugal forces at low frequencies and creates a narrow
range of frequencies where the gravitational forces are oscillating too rapidly to
cause segregation but the centrifugal forces are still weak. In this regime a rotating
suspension approximates a zero-gravity environment.

With inertial effects explictly excluded, the simulations show axial banding at low
frequencies similar to that found in experimental measurements. We have suggested
(Lee & Ladd 2005) that the circular shape of the cross section makes the particle
distribution unstable to axial perturbations, by diverting the backflow away from
the settling particles. The rigid cylinder wall screens the hydrodynamic interactions
at length scales beyond the cylinder diameter; the latter sets the length scale of the
density fluctuations and flow patterns. At much higher frequencies, phase separation
on scales larger than the cylinder diameter has been found experimentally (Lipson
& Seiden 2002; Breu et al. 2003; Matson et al. 2003, 2005). However, here inertial
contributions to the fluid flow and particle dynamics are important.

This work was supported by the National Aeronautics and Space Administration
of the USA under grant no. NAG NNCO4GA89G.

Appendix A. Po,s
γ (λ, k, θ, z), Ko,s

ε (λ, k, r) and Io,s
ε (λ, k, r)

The phase of the observer particle, Po
γ (λ, k, θ, z), has the following functionality for

all nine components of the source-field Green’s function:

Po
1(λ, k, θ, z) = cos kθ cos λz, Po

2(λ, k, θ, z) = cos kθ sin λz, (A 1a, b)

Po
3(λ, k, θ, z) = sin kθ cos λz, Po

4(λ, k, θ, z) = sin kθ sin λz. (A 1c, d)

The phase of the source particle, Ps
γ (λ, k, θ, z), has different functionalities for

different components of the source-field Green’s function.
For vr

r , vθ
θ and vz

z ,

Ps
1(λ, k, θ, z) = cos kθ cos λz, Ps

2(λ, k, θ, z) = cos kθ sin λz, (A 2a, b)

Ps
3(λ, k, θ, z) = sin kθ cos λz, Ps

4(λ, k, θ, z) = sin kθ sin λz. (A 2c, d)

For vr
θ and vθ

r ,

Ps
1(λ, k, θ, z) = − sin kθ cos λz, Ps

2(λ, k, θ, z) = − sin kθ sin λz, (A 3a, b)

Ps
3(λ, k, θ, z) = cos kθ cos λz, Ps

4(λ, k, θ, z) = cos kθ sin λz. (A 3c, d)

For vr
z and vz

r ,

Ps
1(λ, k, θ, z) = − cos kθ sin λz, Ps

2(λ, k, θ, z) = cos kθ cos λz, (A 4a, b)

Ps
3(λ, k, θ, z) = − sin kθ sin λz, Ps

4(λ, k, θ, z) = sin kθ cos λz. (A 4c, d)
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For vθ
z and vz

θ ,

Ps
1(λ, k, θ, z) = sin kθ sin λz, Ps

2(λ, k, θ, z) = − sin kθ cos λz, (A 5a, b)

Ps
3(λ, k, θ, z) = − cos kθ sin λz, Ps

4(λ, k, θ, z) = cos kθ cos λz. (A 5c, d)

The functions Ko
ε(λ, k, r) in (2.11) are given by

Ko
1(λ, k, r) = λrKk−2(λr), Ko

2(λ, k, r) = Kk−1(λr), (A 6a, b)

Ko
3(λ, k, r) = λrKk(λr), Ko

4(λ, k, r) = Kk+1(λr), Ko
5(λ, k, r) = λrKk+2(λr).

(A 6c–e)

The functions Io
ε(λ, k, r) in (2.11) have the same expressions as the Ko

ε but with I

instead of K .
Ko

ε and Io
ε have the same expressions for all nine components of the source-field

Green’s function, but Ks
ε and Is

ε have different expressions for different components.
The following representation is favourable for order-N computations of the source
field:

For vr
r ,

Ks
1(λ, k, r) = −1

4
Kk−1(λr), (A 7a)

Ks
2(λ, k, r) =

λr

2
Kk−2(λr) +

k + 1

2
Kk−1(λr) +

λr

2
Kk(λr), (A 7b)

Ks
3(λ, k, r) = −3

4
Kk−1(λr) − 3

4
Kk+1(λr), (A 7c)

Ks
4(λ, k, r) =

λr

2
Kk(λr) − k − 1

2
Kk+1(λr) +

λr

2
Kk+2(λr), (A 7d)

Ks
5(λ, k, r) = −1

4
Kk+1(λr) (A 7e)

and

Is
1(λ, k, r) =

1

4
Ik−1(λr), (A 8a)

Is
2(λ, k, r) = −λr

2
Ik−2(λr) +

k + 1

2
Ik−1(λr) − λr

2
Ik(λr), (A 8b)

Is
3(λ, k, r) =

3

4
Ik−1(λr) +

3

4
Ik+1(λr), (A 8c)

Is
4(λ, k, r) = −λr

2
Ik(λr) − k − 1

2
Ik+1(λr) − λr

2
Ik+2(λr), (A 8d)

Is
5(λ, k, r) =

1

4
Ik+1(λr). (A 8e)

For vr
θ ,

Ks
1(λ, k, r) =

1

4
Kk−1(λr), (A 9a)

Ks
2(λ, k, r) = −λr

2
Kk−2(λr) − k + 1

2
Kk−1(λr) − λr

2
Kk(λr), (A 9b)

Ks
3(λ, k, r) = −1

4
Kk−1(λr) +

1

4
Kk+1(λr), (A 9c)

Ks
4(λ, k, r) =

λr

2
Kk(λr) − k − 1

2
Kk+1(λr) +

λr

2
Kk+2(λr), (A 9d)

Ks
5(λ, k, r) = −1

4
Kk+1(λr) (A 9e)
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and

Is
1(λ, k, r) = −1

4
Ik−1(λr), (A 10a)

Is
2(λ, k, r) =

λr

2
Ik−2(λr) − k + 1

2
Ik−1(λr) +

λr

2
Ik(λr), (A 10b)

Is
3(λ, k, r) =

1

4
Ik−1(λr) − 1

4
Ik+1(λr), (A 10c)

Is
4(λ, k, r) = −λr

2
Ik(λr) − k − 1

2
Ik+1(λr) − λr

2
Ik+2(λr), (A 10d)

Is
5(λ, k, r) =

1

4
Ik+1(λr). (A 10e)

For vr
z , Ks

1, Ks
5, Is

1 and Is
5 are zero,

Ks
2(λ, k, r) =

1

2
Kk−1(λr), Ks

3(λ, k, r) = −λrKk(λr), Ks
4(λ, k, r) =

1

2
Kk+1(λr)

(A 11a–c)

and

Is
2(λ, k, r) =

1

2
Ik−1(λr), Is

3(λ, k, r) = −λrIk(λr), Is
4(λ, k, r) =

1

2
Ik+1(λr).

(A 12a–c)

For vθ
r ,

Ks
1(λ, k, r) = −1

4
Kk−1(λr), Ks

2(λ, k, r) = −k − 3

2
Kk−1(λr), (A 13a, b)

Ks
3(λ, k, r) = −3

4
Kk−1(λr) +

3

4
Kk+1(λr), (A 13c)

Ks
4(λ, k, r) = −k + 3

2
Kk+1(λr), Ks

5(λ, k, r) =
1

4
Kk+1(λr) (A 13d , e)

and

Is
1(λ, k, r) =

1

4
Ik−1(λr), Is

2(λ, k, r) = −k − 3

2
Ik−1(λr), (A 14a, b)

Is
3(λ, k, r) =

3

4
Ik−1(λr) − 3

4
Ik+1(λr), (A 14c)

Is
4(λ, k, r) = −k + 3

2
Ik+1(λr), Is

5(λ, k, r) = −1

4
Ik+1(λr). (A 14d , e)

For vθ
θ ,

Ks
1(λ, k, r) = −1

4
Kk−1(λr), Ks

2(λ, k, r) = −k − 3

2
Kk−1(λr), (A 15a, b)

Ks
3(λ, k, r) = −1

4
Kk−1(λr) +

1

4
Kk+1(λr), (A 15c)

Ks
4(λ, k, r) =

k + 3

2
Kk+1(λr), Ks

5(λ, k, r) = −1

4
Kk+1(λr) (A 15d , e)
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and

Is
1(λ, k, r) =

1

4
Ik−1(λr), Is

2(λ, k, r) = −k − 3

2
Ik−1(λr), (A 16a, b)

Is
3(λ, k, r) = −1

4
Ik−1(λr) − 1

4
Ik+1(λr), (A 16c)

Is
4(λ, k, r) =

k + 3

2
Ik+1(λr), Is

5(λ, k, r) =
1

4
Ik+1(λr). (A 16d , e)

For vθ
z , Ks

1, Ks
3, Ks

5, Is
1, Is

3 and Is
5 are zero,

Ks
2(λ, k, r) =

1

2
Kk−1(λr), Ks

4(λ, k, r) = −1

2
Kk+1(λr), (A 17a, b)

and

Is
2(λ, k, r) =

1

2
Ik−1(λr), Is

4(λ, k, r) = −1

2
Ik+1(λr). (A 18a, b)

For vz
r , Ks

1, Ks
5, Is

1 and Is
5 are zero,

Ks
2(λ, k, r) = −λrKk−1(λr), Ks

3(λ, k, r) = 2Kk(λr), (A 19a, b)

Ks
4(λ, k, r) = −λrKk+1(λr) (A 19c)

and

Is
2(λ, k, r) = −λrIk−1(λr), Is

3(λ, k, r) = 2Ik(λr), Is
4(λ, k, r) = −λrIk+1(λr).

(A 20a–c)

For vz
θ , Ks

1, Ks
3, Ks

5, Is
1 , Is

3 and Is
5 are zero

Ks
2(λ, k, r) = λrKk−1(λr), Ks

4(λ, k, r) = −λrKk+1(λr) (A 21a, b)

and

Is
2(λ, k, r) = λrIk−1(λr), Is

4(λ, k, r) = −λrIk+1(λr). (A 22a, b)

For vz
z , Ks

1, Ks
5, Is

1 and Is
5 are zero

Ks
2(λ, k, r) =

1

2
Kk(λr), (A 23a)

Ks
3(λ, k, r) = −λr

2
Kk−1(λr) + 2Kk(λr) − λr

2
Kk+1(λr), (A 23b)

Ks
4(λ, k, r) =

1

2
Kk(λr) (A 23c)

and

Is
2(λ, k, r) = −1

2
Ik(λr), (A 24a)

Is
3(λ, k, r) =

λr

2
Ik−1(λr) + 2Ik(λr) +

λr

2
Ik+1(λr), (A 24b)

Is
4(λ, k, r) = −1

2
Ik(λr). (A 24c)
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Appendix B. �(k, λ, r i , R)

For compactness, the functions f l
m(k, λ, ri, R) will be abbreviated by f l

m(k), omitting
the consistent dependences on λ, ri and R:

f r
r (k) = f 1

1 (k − 1) + f 1
1 (k + 1) − f 1

2 (k − 1) + f 1
2 (k + 1), (B 1a)

f r
θ (k) = f 1

1 (k + 1) − f 1
1 (k − 1) + f 1

2 (k − 1) + f 1
2 (k + 1), (B 1b)

f r
z (k) = f 1

3 (k), (B 1c)

f θ
r (k) = f 2

2 (k + 1) − f 2
2 (k − 1) − f 1

2 (k − 1) − f 1
2 (k + 1), (B 1d)

f θ
θ (k) = f 1

2 (k − 1) − f 1
2 (k + 1) + f 2

2 (k − 1) + f 2
2 (k + 1), (B 1e)

f θ
z (k) = f 2

3 (k), (B 1f)

f z
r (k) = f 2

3 (k − 1) − f 2
3 (k + 1) − f 1

3 (k − 1) − f 1
3 (k + 1), (B 1g)

f z
θ (k) = f 1

3 (k − 1) − f 1
3 (k + 1) − f 2

3 (k − 1) − f 2
3 (k + 1), (B 1h)

f z
z (k) = f 3

3 (k). (B 1i)

The 4 × 3 matrix �(k, λ, r i , R) of (2.26) has the following components:

�11 = Fr (r i) cos kθi cos λzif
r
r (k) + Fθ (r i) sin kθi cos λzif

θ
r (k)

+ Fz(r i) cos kθi sin λzif
z
r (k), (B 2a)

�12 = −Fr (r i) cos kθi cos λzif
r
θ (k) − Fθ (r i) sin kθi cos λzif

θ
θ (k)

− Fz(r i) cos kθi sin λzif
z
θ (k), (B 2b)

�13 = −Fr (r i) cos kθi cos λzif
r
z (k) + Fθ (r i) sin kθi cos λzif

θ
z (k)

− Fz(r i) cos kθi sin λzif
z
z (k), (B 2c)

�21 = −Fr (r i) cos kθi sin λzif
r
r (k) − Fθ (r i) sin kθi sin λzif

θ
r (k)

+ Fz(r i) cos kθi cos λzif
z
r (k), (B 2d)

�22 = Fr (r i) cos kθi sin λzif
r
θ (k) + Fθ (r i) sin kθi sin λzif

θ
θ (k)

− Fz(r i) cos kθi cos λzif
z
θ (k), (B 2e)

�23 = Fr (r i) cos kθi sin λzif
r
z (k) − Fθ (r i) sin kθi sin λzif

θ
z (k)

− Fz(r i) cos kθi cos λzif
z
z (k), (B 2f)

�31 = −Fr (r i) sin kθi cos λzif
r
r (k) + Fθ (r i) cos kθi cos λzif

θ
r (k)

− Fz(r i) sin kθi sin λzif
z
r (k), (B 2g)

�32 = Fr (r i) sin kθi cos λzif
r
θ (k) − Fθ (r i) cos kθi cos λzif

θ
θ (k)

+ Fz(r i) sin kθi sin λzif
z
θ (k), (B 2h)

�33 = Fr (r i) sin kθi cos λzif
r
z (k) + Fθ (r i) cos kθi cos λzif

θ
z (k)

− Fz(r i) sin kθi sin λzif
z
z (k), (B 2i)

�41 = Fr (r i) sin kθi sin λzif
r
r (k) − Fθ (r i) cos kθi sin λzif

θ
r (k)

− Fz(r i) sin kθi cos λzif
z
r (k), (B 2j)

�42 = −Fr (r i) sin kθi sin λzif
r
θ (k) + Fθ (r i) cos kθi sin λzif

θ
θ (k)

+ Fz(r i) sin kθi cos λzif
z
θ (k), (B 2k)

�43 = −Fr (r i) sin kθi sin λzif
r
z (k) − Fθ (r i) cos kθi sin λzif

θ
z (k)

+ Fz(r i) sin kθi cos λzif
z
z (k), (B 2l)
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